

Regular Expressions

Introduction to Computer Science

Lecture Contents

● Parsing
● Parsing in Java
● Regular Expressions

Parsing

● Parse (verb)
– analyze (a sentence)

 into its parts and
 describe the
 syntactic roles
 of the parts

The small boys walked to the store.
boys walked

small

A

AP

VP

S

PP

DP

DP

N' V'

the

D

The

D

boys

N C

store.

N

walked

V T

to

P

Parsing

● Parse (verb)
– analyze (a sentence) into its parts and describe the syntactic roles of the

parts
– Computing: analyze (some text) into logical syntactic components,

typically in order to test conformability to a logical grammar

Parsing in Java

● class StringTokenizer

● Method String.split() and String.matches()

● class Pattern and class Matcher

● class Scanner
● Write your own custom parser

Parsing in Java

● class StringTokenizer
– a legacy class (don’t bother learning unless necessary)

● Write your own custom parser
– if speed is really required

Parsing in Java

● Method String.split() and String.matches()

– for simple String splitting and pattern matching

– each takes a regular expression String as a parameter

– split() returns type String[]

– matches() returns boolean

Parsing in Java

● class Pattern and class Matcher

– matches a regular expression String

– class Pattern sets up the matcher

– method matcher.find() looks for the next sequence

– method matcher.group() returns the matched sequence

– does not process the entire String at once
● May be better than String.split() and String.match() for

 long String variables

Parsing in Java

● Class Scanner
– most flexible

– can take input from types: String, File, InputStream, Readable

– pre-defined patterns, or match a regular expression

What are Regular Expressions?

● Regular Expressions allow searching
 for specific patterns of text.
– Not programming language specific
– Also used by application software

– Unix-like OS command line: grep
● get regular expression and print

– A bit tedious to learn, but very powerful

Examples of Use

● Match a string:
– "hi"

● "hi"
● "chicken"
● "this is his history"

Examples of Use

● Match a character from a defined set:
– "[abc]"

● "hi"
● "chicken"
● "this was his history"

Examples of Use

● Match a character from a defined set with a range of values:
– "[abc0-9]"

● "hi"
● "chicken"
● "add 6 and 9"

Examples of Use

● Match a character from a defined set with a range of values:
– "[a-zA-Z]"

● "hi"
● "chicken"
● "add 6 and 9"
● "Hello World!!"

Examples of Use

● Match a character from a defined set with a range of values:
– "[a-zA-Z0-9]"

● "hi"
● "chicken"
● "add 6 and 9"
● "Hello World!!"

Examples of Use

● Match a character from a defined set with a range of values:
– "Q[0-9]"

● "Read Q1 again"
● "Read q1 again"
● "Answer Q3 through Q7"
● "Answer Q12 but not Q3"

Examples of Use

● Match a string of characters from a defined set:

syntax meaning
? match the previous character 0 or 1 times
* match the previous character 0 or more times
+ match the previous character 1 or more times

{n} match the previous character exactly n times
{n,} match the previous character at least n times
{,m} match the previous character at most m times
{n,m} match the previous character between n and m times

Examples of Use

● Match a string of characters from a defined set:
– The character '+' in a regex means “one or more of the previous

character”.
– "[a-zA-Z]+"

● "hi"
● "chicken"
● "Car13"
● "Hello!!"

Examples of Use

● Match a string of characters from a defined set:
– The character '+' in a regex means “one or more of the previous

character”.
– "[a-zA-Z]+[0-9]"

● "hi"
● "chicken"
● "ch1cken"
● "Race13!!"

Examples of Use

● Match a string of characters from a defined set:
– The character sequence "{n}" in a regex means “match the previous

character n times”:
– "[a-zA-Z]{5}"

● "hi!"
● "four!"
● "Hello!!"

Examples of Use

● Match a string of characters from a defined set:
– The character sequence "{n}" in a regex means “match the previous

character n times”:
– "[a-zA-Z]{5}"

● "hi!"
● "four!"
● "Hello!!"

Examples of Use

● Match a string of characters from a defined set:
– The character '?' in a regex means “zero or one of the previous

character”.
– "[+–]?[0-9]+"

● "35"
● "–45a"
● "ch1cken"
● "Race+13!!"

Examples of Use

● Match a string of characters from a defined set:
– The character '?' in a regex means “zero or one of the previous

character”.
– "[+–]?[0-9]+"

● "35"
● "–45a"
● "ch1cken"
● "Race+13!!"

Examples of Use

● Match a string of characters from a defined set:
– The character '.' in a regex means “any one character”.

– "b.d"
● "bad"
● "bed"
● "abide"
● "ab!de"
● "bead"
● "The lamb didn’t run."

Examples of Use

● Match a string of characters from a defined set:
– The character '.' in a regex means “any one character”.

– "b.d"
● "bad"
● "bed"
● "abide"
● "ab!de"
● "bead"
● "The lamb didn’t run."

Examples of Use

● Match a string of characters from a defined set:
– The character '+' in a regex means “one or more of the previous

character”.
– "Hell+o"

● "Helo!"
● "Hello!"
● "Helllllllo!"
● "hello”

Examples of Use

● Match a string of characters from a defined set:
– The character '+' in a regex means “one or more of the previous

character”.
– "Hell+o"

● "Helo!"
● "Hello!"
● "Helllllllo!"
● "hello”

Examples of Use

● Match a string of characters from a defined set:
– The character '.' in a regex means “any one character”.

– "[a-zA-Z]{1}.+[0-9]"
● "A9"
● "A10"
● "A%0"
● "Apple"
● "iPhone14"
● "iPhone14max"
● "Apple 3e"
● "123o–4"

Examples of Use

● Match a string of characters from a defined set:
– The character '.' in a regex means “any one character”.

– "[a-zA-Z]{1}.+[0-9]"
● "A9"
● "A10"
● "A%0"
● "Apple"
● "iPhone14"
● "iPhone14max"
● "Apple 3e"
● "123o–4"

The Scanner Class and Regular Expressions

● When using the Scanner class:
– Method hasNext(String pattern)

● returns true only if the regular expression given in pattern matches the
 entire next token.

● "[A-Za-z]" returns true for a single letter
● "[0-9]" returns true for a single digit
● "[A-Za-z]+" returns true for a word with only letters

The Scanner Class and Regular Expressions

public static String getUserWord(String prompt) {
while(true) {

System.out.print(prompt);
if(in.hasNext("[A-Za-z]+")) {

String s = in.next();
in.nextLine(); // remove rest of line from buffer
return s;

} else {
in.nextLine(); // remove invalid input line from buffer

}
}

}

The Scanner Class and Regular Expressions

public static String getUserWord(String prompt) {
return getUserPattern(prompt, "[A-Za-z]+");

}

public static String getUserPattern(String prompt, String pattern) {
while(true) {

System.out.print(prompt);
if(in.hasNext(pattern)) {

String s = in.next();
in.nextLine(); // remove rest of line from buffer
return s;

} else {
in.nextLine(); // remove invalid input line from buffer

}
}

}

The Scanner Class and Regular Expressions

public static char getUserLetter(String prompt) {
return getUserPattern(prompt, "[A-Za-z]").charAt(0);

}

public static char getUserDigit(String prompt) {
return getUserPattern(prompt, "[0-9]").charAt(0);

}

public static String getUserWord(String prompt) {
return getUserPattern(prompt, "[A-Za-z]+");

}

public static String getUserPattern(String prompt, String pattern) {
while(true) {

System.out.print(prompt);
if(in.hasNext(pattern)) {

String s = in.next();
in.nextLine(); // remove rest of line from buffer
return s;

} else {
in.nextLine(); // remove invalid input line from buffer

}
}

}

Regular Expressions

AP Computer Science A – Java

