Introduction to Computer Science

Regular Expressions

Lecture Contents

* Parsing
* Parsing in Java

* Regular Expressions

h.

Parsing

B
* Parse (verb) _
— analyze (a sentence) |
into its parts and DP 54
describe the |
syntactic roles
2t DP

of the parts AP N’

B

D A N#C 2N T sl i W

| L L T .

The small boys walked to the store.

Parsing

* Parse (verb)

— analyze (a sentence) into its parts and describe the syntactic roles of the
parts -

— Computing: analyze (some text) into logical syntactic components,
typically in order to test conformability to a logical grammar

h.

- i

Parsing in Java

e class StringTokenizer

e Method String.split() and Strlng matches()
. class Patternand class Matcher

e class Scanner

* Write your own custom parser

h.

- A

Parsing in Java

e class StringTokenizer
— alegacy class (don’t bother learning unless necessary)
 Write your own custom parser

— if speed is really required

h.

Parsing in Java

e Method String.split() and String.mafches()_

for simple String splitting and patterﬁ matching

each takes a regular expression St ring as a parameter
split() returns type String][]

matches () returns boo lean

Tih| s
Tlhlils| lils| lal Isleln]tlelnicle].|] =P ;S
sle[n[t

Parsing in Java

e class Pattern and class Matcher

h.

matches a regular expression String |

class Pattern sets up the matcher

method matcher.find() looks for the next sequence
method matcher.group() returns the matched sequence

does not process the entire String at once

* May be better than String.split() and String.match() for
long String variables

- A

— can take input from types: St ring,_ File, InputStream, Readable

Parsing in Java

e (Class Scanner

— most flexible

— pre-defined patterns, or match a regular expression

h.

What are Regular ExpresSions?

* Regular Expressions allow searching LEARNING
for specific patterns of text. '

Regular Expressions

— Not programming language specific

— Also used by application software

— Unix-like OS command line: grep
e (et regular expression and print

— A bit tedious to learn, but very powerful

Free unaffiliated eBook created from
Stack Overflow contributors.

h.

Examples of Use

* Match a string:
3 Ilhill
~ Ilhill
« '"chicken"
« "this is his history"

Examples of Use

e Match a character from a defined set:
e T [abC] " :
A Ilhill
e "chicken"
e "this was his history"

- i

* Match a character from a defined set with a range of values:
- "[abcO-9]" | |
A Ilhill
« "chicken"
« "add 6 and 9"

Examples of Use

- i

* Match a character from a defined set with a range of values:
"[a-ZA-Z]" : '
Ilhill
e "chicken"

"add 6 and 9"
« "Hello World!!"

Examples of Use

h.

- i

* Match a character from a defined set with a range of values:
"Ta-zA-Z0-9]" | |
Ilhill
« "chicken"

"add 6 and 9"
« "Hello World!!"

Examples of Use

h.

- i

* Match a character from a defined set with a range of values:

"Q[O'g] 11

"Read Q1 again"
« "Read g1 again"

"Answer Q3 through Q7"
« "Answer Q12 but not Q3"

Examples of Use

h.

. | i

Examples of Use

* Match a string of characters from a defined set:

syntax | meaning

? match the previous character 0 or 1 times
2 match the previous character O or more times
+ match the previous character 1 or more times

{n} match the previous character exactly n times
{n,} match the previous character at least n times
{,m} | match the previous character at most m times
{n,m} | match the previous character between n and m

h.

Examples of Use

* Match a string of characters from a defined set:

— The character '+' in a regex means “one or more of the previous
character”. |
" [a_ZA_Z]_I_II
e "hi"
« "chicken"
« "Cari13"
« "Hello!!"

Examples of Use

* Match a string of characters from a defined set:

— The character '+' in a regex means “one or more of the previous
character”.
"[Ta-zA-Z]+[0-9]"

i

"chicken"

"chicken"

"Racel3!!"

- A

— The character sequence "{n}" in a regex means “match the previous
character n times”: '

Examples of Use

* Match a string of characters from a defined set:

"[a-zA-Z]{5}"
o S ek ik

« "four!"

« "Hello!!"

h.

- A

— The character sequence "{n}" in a regex means “match the previous
character n times”: '

Examples of Use

* Match a string of characters from a defined set:

"[a-zA-Z]{5}"
o S ek ik

« "four!"

« "Hello!!"

h.

Examples of Use

* Match a string of characters from a defined set:

— The character '?"' in a regex means “zero or one of the previous
character”.

"[+-17[0-9]+"
S0k
"_453"

"chicken"
"Race+13!!"

Examples of Use

* Match a string of characters from a defined set:

— The character '?"' in a regex means “zero or one of the previous
character”.

"[+-17[0-9]+"
ok
"_453"

"chicken"
"Race+13!!"

Examples of Use

* Match a string of characters from a defined set:

— The character ' . ' in a regex means “any one character”.

— "ph.d"
- "bad"
. "bed"
. "abide"
. "ab!de"
. "bead"

e "The lamb didn’t run." :

Examples of Use

* Match a string of characters from a defined set:

— The character ' . ' in a regex means “any one character”.

— "ph.d"
- "bad"
- "bed"
- "abide"
. "ab!de"
. "bead"

e "The lamb didn’t run." :

Examples of Use

* Match a string of characters from a defined set:

— The character '+' in a regex means “one or more of the previous
character”.

"Hell+o"

« "Helo!"

e« "Hello!"

« "Helllllllo!"
« "hello”

Examples of Use

* Match a string of characters from a defined set:

— The character '+' in a regex means “one or more of the previous
character”.

"Hell+o"

« "Helo!"

e« "Hello!"

« "Helllllllo!™"
« "hello”

Examples of Use

* Match a string of characters from a defined set:

— The character

' . ' in a regex means “any one character”.

- "[a-zA-Z]{1}.+[0-9]"

h.

nAQM
"A10"

"A%0"

"Apple"

"iPhonel14"

"iPhonel4max" .
"Apple 3e"

"1230-4"

Examples of Use

* Match a string of characters from a defined set:

— The character

' . ' in a regex means “any one character”.

- "[a-zA-Z]{1}.+[0-9]"

h.

nAQM
"A10"

"A%0"

"Apple"
"iPhonel14"
"iPhonel4max"
"Apple 3e"
"1230-4"

The Scanner Class and Regular Expressions

* When using the Scanner class:
— Method hasNext (String pattern) |

» returns true only if the regular expresszon given in pattern matches the
entire next token.

« "[A-Za-z]" returns true for a single letter
« "[0-9]" returns true for a single digit

e "[A-Za-z]+" returns true for a word with only letters

The Scanner Class and Regular Expressions

public static String getUserWord(Strlng prompt) {
while(true) {

System.out.print(prompt);

if(in.hasNext("[A-Za-z]+")) {
String s = in.next();
in.nextLine(); // remove rest of line from buffer
return s;

} else {
in.nextLine(); // remove invalid input line from buffer

} /

The Scanner Class and Regular Expressions

public static String getUserWord(String prompt) {
return getUserPattern(prompt, "[A-Za-z]+");
}

public static String getUserPattern(String prompt, String pattern) {
while(true) { '
System.out.print(prompt);
if(in.hasNext(pattern)) {
String s = in.next();
in.nextLine(); // remove rest of line from buffer
return s;
} else {
in.nextLine(); // remove invalid input Lline from buffer
} -

-

The Scanner Class and Regular Expressions

public static char getUserLetter(String prompt) {
return getUserPattern(prompt, "[A-Za-z]").charAt(0);
}

public static char getUserDigit(String prompt) {
return getUserPattern(prompt, "[0-9]").charAt(0);
¥

public static String getUserWord(String prompt) {
return getUserPattern(prompt, "[A-Za-z]+");
}

public static String getUserPattern(String prompt String pattern) { -
while(true) { |
& System.out.print(prompt);
if(in.hasNext(pattern)) {

String s = in.next();

h. in.nextLine(); // remove rest of line from buffer
vvatirivmm o

AP Computer Science A — Java

Regular Expressions

